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Abstract: We consider the ADE-series of (2, 0) supersymmetric quantum theories on

T 5×R, where the first factor is a flat spatial five-torus, and the second factor denotes time.

The quantum states of such a theory Φ are characterized by a discrete quantum number

f ∈ H3(T 5, C), where the finite abelian group C is the center subgroup of the corresponding

simply connected simply laced Lie group G. At energies that are low compared to the

inverse size of the T 5, the spectrum consists of a set of continua of states, each of which is

characterized by the value of f and some number 5r of additional continuous parameters.

By exploiting the interpretation of this theory as the ultraviolet completion of maximally

supersymmetric Yang-Mills theory on T 4 × S1 × R with gauge group Gadj = G/C and

coupling constant g given by the square root of the radius of the S1 factor, one may

compute the number N r
f (Φ) of such continua. We perform these calculations in detail for

the A- and D-series. While the Yang-Mills theory formalism is manifestly invariant under

the SL4(Z) mapping class group of T 4, the results are actually found to be invariant under

the SL5(Z) mapping class group of T 5, which provides a strong consistency check.
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1. Introduction

Understanding the conceptual foundations of the ADE-series of (2, 0) supersymmetric

quantum theories in d = 5 + 1 dimensions [1] remains an outstanding challenge. In this

paper, we will consider these theories on a space-time of the form

T 5 × R, (1.1)

where the first factor is a flat spatial five-torus, and the second factor denotes time. By

supersymmetry, the energy spectrum of such a system is bounded from below by zero. In

general, the precise spectrum depends on the choice of flat metric on T 5, and a complete

determination of it is certainly out of reach at the present. But the properties of the low-

energy spectrum (compared to the scale set by the inverse size of the T 5) are independent

of the T 5 geometry, and should be more accessible. The theory has no mass-gap, so the

low-energy spectrum consists of a set of continua of states, each of which is characterized

by the values of some discrete quantum numbers, and also by the number of continuous
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parameters needed to label the states. The goal of this paper is to describe the properties

of this low-energy spectrum in general, and also to compute it explicitly in most cases.

What makes this problem tractable is the relationship between (2, 0) theory in d = 5+1

dimensions and maximally supersymmetric Yang-Mills theory in lower dimensions [2]. In

particular, with

T 5 ≃ T 4 × S1, (1.2)

our (2, 0) theory Φ can be regarded as an ultra-violet completion of maximally supersym-

metric Yang-Mills theory on T 4 × R. The gauge group of the Yang-Mills theory is given

by the simply laced group of adjoint type Gadj whose root lattice Γroot is determined by Φ.

We have Gadj = G/C, where G is the simply connected covering group of Gadj with center

subgroup C. In terms of lattices, C ≃ Γweight/Γroot, where the weight lattice Γweight is the

dual of the root lattice Γroot ⊂ Γweight. The Yang-Mills coupling constant g is given by the

square root of the radius of the S1 factor. The independence of the low-energy spectrum of

the T 5 geometry in particular means that it is independent of the coupling constant, and

thus may be computed by semi-classical methods in the weak coupling limit g → 0. This

is completely analogous to previous calculations for maximally supersymmetric Yang-Mills

theory on T 3 × R [3].

In the next section, we will outline the general features of this computation. In sec-

tions three and four, we will then perform it in detail for the A-series and the D-series

respectively. The remaining three models of E-type are left for the future. From the point

of view of (2, 0) theory, these results derived in Yang-Mills theory, may be regarded as

”experimental” data. Hopefully, they will eventually get a more ”theoretical” explanation,

shedding light on the conceptual foundations of (2, 0) theory.

2. The general theory

In this section, we will review maximally supersymmetric Yang-Mills theory with a simply

laced gauge group Gadj = G/C of adjoint type on T 4 × R and explain how to determine

the low-energy spectrum. We will also describe the interpretation of the results from the

perspective of (2, 0) theory.

2.1 The degrees of freedom

We should first determine the possible topological choices of the Yang-Mills gauge bundle

P (a principal Gadj bundle over the spatial T 4). The relevant homotopy groups of the

gauge group Gadj = G/C, where G is simply connected with center subgroup C, are

πk(Gadj) ≃



















1, k = 0

C, k = 1

1, k = 2

Z k = 3.

It follows that the isomorphism class of P is completely determined by two characteristic

classes: The discrete abelian magnetic ’t Hooft flux [4]

m ∈ H2(T 4, C), (2.1)
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and the (fractional) instanton number

k ∈ H4(T 4, Q) ≃ H0(T 4, Q) ≃ Q. (2.2)

These are related as

k −
1

2
m · m ∈ H4(T 4, Z) ⊂ H4(T 4, Q), (2.3)

where the raised dot denotes the tensor product of the cup product on H2(T 4, Z) and the

inner product modulo integers on C. (The inner product on C ≃ Γweight/Γroot is induced

from the inner product on Γweight.)

For a given bundle P , we let Ω̃ = Aut(P ) denote the group of gauge transformations

(bundle automorphisms). It is parametrized by the space of sections of the bundle Ad(P )

associated to P via the adjoint action of Gadj on itself. In general, Ω̃ is disconnected, and

we let Ω0 denote its connected component subgroup. Physical states must be invariant

under Ω0. Indeed, the generators of infinitesimal gauge transformations are weakly equal

to zero in the classical field theory. But the states may transform non-trivially under the

discrete abelian quotient group Ω = Ω̃/Ω0 of ”large” gauge transformations. It follows

from the homotopy type of Gadj that

Ω ≃ Hom(π1(T
4), π1(Gadj)) ≃ H1(T 4, C). (2.4)

The transformation properties of a quantum state can thus be described by the discrete

abelian electric ’t Hooft flux [4]

e ∈ Hom(Ω, U(1)) ≃ H3(T 4, C∗) ≃ H3(T 4, C), (2.5)

where we have first used Poincaré duality and then the isomorphism between C and its

Pontryagin dual C∗ = Hom(C,U(1)) that follows from the inner product on C.

We will work in temporal gauge, so that the time-component of the gauge field is

identically zero. The bosonic fields of the theory are then a connection A on the bundle

P over T 4, and five scalar fields Φ5, . . . ,Φ9 that are sections of the vector bundle ad(P )

associated to P via the adjoint representation of Gadj. The scalar fields transform in the

five-dimensional vector representation of the Spin(5) ≃ Sp(4) R-symmetry group. The

fermionic fields are four spinors fields Ψ1, . . . ,Ψ4 that are sections of ad(P ) ⊗ S, where S

is a spinor bundle over space-time. They transform in the four-dimensional spinor repre-

sentation of Spin(5) ≃ Sp(4).

2.2 Low energy states

The Yang-Mills energy density is a sum of positive definite terms, each of which has to be

near zero for a low-energy state. We first consider the magnetic contribution

1

g2
Tr(F ∧ ∗F ), (2.6)

where F is the field strength (curvature) of the connection A on the gauge bundle P . So

in the weak coupling limit g → 0, the wave-function of a low-energy state is concentrated

near flat connections, for which F = 0. (See e.g. [5].)
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For a given P , there is a moduli space M of such flat connections. (For a general

discussion, which however focuses on bundles over T 3, see [6].) In general, it consists of

several components:

M =
⋃

α

Mα, (2.7)

where the range of the label α depends on the topological class of P as described by

the discrete abelian magnetic ’t Hooft flux m ∈ H2(T 4, C). (The instanton number k ∈

H4(T 4, Q) has to vanish for a flat connection, since its image in de Rham cohomology is

given by the class of Tr(F ∧ F ).) Each component Mα of M is of the form

Mα = (T rα × T rα × T rα × T rα)/Wα (2.8)

for some number rα, known as the rank of the component, and some discrete group Wα,

which acts on the torus T rα . The simplest example of such a component is obtained for

an arbitrary group Gadj by considering a topologically trivial bundle P , i.e. 0 = m ∈

H2(T 4, C). There is then a component M0 for which r0 equals the rank of Gadj. In fact,

T r0 may be identified with a maximal torus of Gadj, and W0 is the corresponding Weyl

group. But even for m = 0, there are in general also other components.

A flat connection is characterized by its holonomies

U ∈ Hom(π1(T
4), Gadj), (2.9)

modulo conjugation by elements of Gadj (which represent transformations in the connected

component Ω0 of the group Ω̃ of gauge transformations). After a choice of basis γi, i =

1, . . . 4 of the homology group H1(T
4, Z) ≃ Z4, we may represent U by four commuting

elements Ui ∈ Gadj modulo simultaneous conjugation by elements of Gadj. An arbitrary

lifting Ûi ∈ G to the simply connected covering group is however only almost commuting,

in the sense that

ÛiÛjÛ
−1
i Û−1

j = mij ∈ C. (2.10)

Here mij ∈ H2(T 2, C) denotes the restriction of the discrete abelian magnetic ’t Hooft flux

m ∈ H2(T 4, C) to the two-torus spanned by the directions i and j, i.e. m = 1
2!mijdxi ∧

dxj , where the dxi, constitute a basis of H1(T 4, Z) dual to the basis γi. Large gauge

transformations act on the Ûi by multiplication by elements of the center C, i.e. they

amount to a change of lifting of the Ui from Gadj to G.

At a point p in a component Ma of rank rα of the moduli space of flat connections,

the holonomies Ui spontaneously break the gauge symmetry to a subgroup of rank rα.

Generically, the Lie algebra h of this unbroken group is abelian, but in general it may be

of the form

h ≃ s ⊕ u(1)r, (2.11)

for some r, 0 ≤ r ≤ rα, and some semi-simple algebra s of rank rα − r.

Given such an algebra h, we let Mh ⊂ M denote the closure of the corresponding

subspace of M. In general, Mh consists of several connected components:

Mh =
⋃

a

Mh
a, (2.12)
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where the range of the index a depends on the subalgebra h under consideration. Large

gauge transformations obviously leave h invariant, and thus act by permuting the compo-

nents Ma.

To begin with, we will consider the degrees of freedom associated with the semi-simple

term s in the unbroken symmetry algebra h ≃ s ⊕ u(1)r. The corresponding part of the

holonomies parametrizes the directions in the moduli space M of flat connections that are

normal to the submanifold Mh on which h is restored.

It is convenient to rescale the four spatial components Ai of the gauge field and instead

use the canonically normalized variables A′
i = g−1Ai. In the weak coupling limit g → 0,

the periodicity of the A′
i then goes to infinity, and they can be regarded as four ordinary

scalar fields. Together with the five original scalar fields Φ5, . . . ,Φ9 and the fermionic fields

Ψ1, . . . ,Ψ4, they constitute the degrees of freedom of supersymmetric quantum mechanics

with 16 supercharges based on the Lie algebra s. This theory is the dimensional reduction

(not compactification) of the corresponding Yang-Mills theory to 0 + 1 dimensions.

This supersymmetric quantum mechanical model has no mass-gap, but is believed to

have a finite dimensional linear space Vs of normalizable zero energy states. In a perturbed

version of the theory, known as N = 1∗ and obtained by adding a mass-term to N = 4

supersymmetric Yang-Mills theory in d = 3 + 1 dimensions, one finds that Vs has an

orthonormal basis with elements in one-to-one correspondence with the set of distinguished

markings of the s Dynkin diagram [7]:

A marking of a Dynkin diagram defines a grading

s =
⊕

n∈Z

sn (2.13)

of the Lie algebra, for which the simple roots corresponding to the marked and unmarked

nodes have grading +1 and 0 respectively, and the Cartan generators have grading 0. The

marking is called distinguished if

dim s0 = dim s+1 = dim s−1. (2.14)

Every Dynkin diagram admits a canonical distinguished marking in which all nodes are

marked, so that dim s0 = dim s+1 = dim s−1 = rank s, but there are also other distin-

guished markings (see e.g. [8]):

dim Vs =











































































1, s ≃ su(n)

# partitions of n

into distinct odd parts, s ≃ so(n)

# partitions of 2n

into distinct even parts, s ≃ sp(2n)

3, s ≃ E6

6, s ≃ E7

11, s ≃ E8

4, s ≃ F4

2, s ≃ G2.
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A priori, one may think that adding a mass-perturbation would change dim Vs, but these

results are actually also (almost) uniquely determined by S-duality of N = 4 supersym-

metric Yang-Mills theory on T 3 × R with various (not necessarily simply laced) gauge

groups [3].

We must also consider the degrees of freedom associated with the abelian term u(1)r in

the unbroken symmetry algebra h ≃ s ⊕ u(1)r . The corresponding part of the holonomies

parametrizes the directions along the submanifold Mh on which h is restored.

Beginning with the gauge field A, the canonical conjugates to the holonomies are

the components of the electric field strength Ei = 1
g2 Ȧi. These appear in the electric

contribution

g2Tr(EiEi) (2.15)

to the Yang-Mills energy density, so a low-energy state must have Ei = 0. This means that

the wave-function of such a state must be locally constant on Mh, i.e. it must be constant

on each component Mh
a.

Continuing with the scalar fields Φ5, . . . ,Φ9, we need only consider the modes which

are covariantly constant over T 4 with respect to the connection A, since non-constant

modes necessarily carry energy of the order of the inverse size of the T 4. We denote the

canonical conjugates of these constant modes as Π5, . . . ,Π9. The quantum theory will

have a continuum of (non-normalizable unless r = 0) states |Π5, . . . ,Π9〉 labeled by the 5r

”eigenvalues” of the corresponding operators Π̂5, . . . , Π̂9. We call this a rank r continuum.

The energy of these states is given by the term

Tr(Π5Π5 + . . . + Π9Π9) (2.16)

in the Yang-Mills energy density.

Finally we must take the spinor fields Ψ1, . . . ,Ψ4 into account. Again, we need only

consider the covariantly constant modes, which however are their own canonical conjugates

and generate a Clifford algebra. Quantization thus gives an additional 28-fold degeneracy

of the continua of states.

2.3 Interpretation in (2, 0) theory

We have found that the complete low energy spectrum may be determined as follows: Each

possible value of the discrete abelian magnetic ’t Hooft flux m ∈ H2(T 4, C) determines a

moduli space M of flat connections. Each possible unbroken subalgebra h ≃ s ⊕ u(1)r is

restored on a submanifold Mh of M, every connected component Mh
a of which contributes

a dimVs dimensional vector space of rank r continua of low-energy states (times the 28-fold

degeneracy due to the fermionic degrees of freedom). Large gauge transformations permute

the components Mh
a while preserving h, and acts trivially on the set of distinguished

markings of the s Dynkin diagram. Diagonalizing this action on the total space of states

gives a decomposition of the spectrum into states of definite discrete abelian electric ’t Hooft

flux e ∈ H3(T 4, C). The spectrum can be summarized by giving the number N r
(m,e)(Gadj)

of rank r continua of discrete abelian magnetic and electric ’t Hooft fluxes m and e in the

theory with gauge group Gadj.
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We will now interpret the results as pertaining to type Φ (2, 0) theory on T 5 × R,

where T 5 = T 4 × S1: The procedure described so far is covariant with respect to the

SL4(Z) mapping class group of T 4, so the numbers N r
(m,e)(Gadj) manifestly depend on m

and e only via the SL4(Z) orbit of the pair (m, e). But by the Künneth isomorphism

H3(T 5, C) ≃ H2(T 4, C) ⊕ H3(T 4, C), (2.17)

the discrete abelian magnetic and electric ’t Hooft fluxes m ∈ H2(T 4, C) and e ∈ H3(T 4, C)

can be seen as components of a single characteristic class

f = m + e ∈ H3(T 5, C), (2.18)

that we will simply call the discrete abelian ’t Hooft flux. We thus write

N r
f (Φ) = N r

(m,e)(Gadj), (2.19)

and (2, 0) theory predicts that these numbers should actually only depend on f ∈ H3(T 5, C)

via its SL5(Z) orbit [f ]. In general, this prediction is non-trivial, since a single SL5(Z) orbit

[f ] may consist of several SL4(Z) orbits of the pair (m, e).

In the following sections, we will verify this prediction in detail for the A- and D-series,

leaving the three E-type models for the future. There is, however, one check that can be

performed without having to specify precisely which (2, 0) theory Φ we are considering. To

describe this, we begin by recalling that low-energy states are localized on flat connections,

for which the instanton number k = [Tr(F ∧ F )] vanishes, and thus in particular is integer-

valued. In view of the relation (2.3), this means that

0 =
1

2
m · m ∈ H0(T 4, Q) mod H0(T 4, Z) (2.20)

for a low-energy state. Next, we fix m ∈ H2(T 4, C) and ask what values of e ∈ H3(T 4, C)

are possible for a low-energy state. As described above, e determines the transformation

properties of a state under the group Ω of large gauge transformations, which act on

the holonomies by multiplication by a quartet of center elements ci ∈ C. But if such a

transformation is equivalent to simultaneous conjugation of the holonomies by some element

g ∈ G (i.e. a gauge transformation in the connected component Ω0), it is trivial and must

thus be trivially represented. In particular, we may choose the element g as one of the

holonomies Ui, conjugation by which, in view of the almost commutation relations (2.10),

is equivalent to multiplication of the holonomies by certain quartets of center elements.

The requirement that these transformations are trivially represented on the states gives a

set of restrictions on the possible values of e, that can be summarized as

0 = m · e ∈ H1(T 4, Q) mod H1(T 4, Z) (2.21)

for a low-energy state. The necessary conditions (2.20) and (2.21) for a low-energy state

may now be summarized as an SL5(Z) covariant condition on the characteristic class f =

m + e:

0 =
1

2
f · f ∈ H1(T 5, Q) mod H1(T 5, Z). (2.22)
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We may write out the formulas (2.20, 2.21, and 2.22) more explicitly by expanding m,

e, and f as

m =
1

2
mijdxi ∧ dxj

e =
1

6
eijkdxi ∧ dxj ∧ dxk

f =
1

6
fabcdxa ∧ dxb ∧ dxc, (2.23)

where i, j, k = 1, . . . , 4 and a, b, c = 1, . . . , 5. We then have

1

2
m · m =

1

8
mijmklǫ

ijkl

m · e =
1

6
mijeklmǫjklmdxi

f · f =
1

24
fabcfdef ǫbcdefdxa, (2.24)

where ǫijkl and ǫabcde are totally anti-symmetric with ǫ1234 = ǫ12345 = 1.

So (2.22) is a necessary condition for low-energy states. In the following sections,

we will explicitly compute the spectrum of the A- and D-series for these values of f ∈

H3(T 5, C).

3. The A-series

The simply connected group corresponding to the Φ = An−1 model is

G = SU(n) (3.1)

consisting of unitary unimodular n × n matrices. Its center subgroup C ≃ Zn consists of

matrices of the form exp(2πic/n)1ln for c ∈ Zn.

The SL4(Z) orbit [m] of m = 1
2mijdxi ∧ dxj ∈ H2(T 4, Zn) is completely classified by

the invariants u and k′ defined by

u = gcd(mij, n)

k′ =
1

u2
Pf(m). (3.2)

Here Pf(m) ∈ Zn is the Pfaffian of m defined by

Pf(m) = m12m34 + m13m42 + m14m23. (3.3)

For given values of these invariants, a representative of the orbit [m] is given by

mij = u











0 1 0 0

−1 0 0 0

0 0 0 k′

0 0 −k′ 0











.
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We also define the integers v and v′ by

v = n/u

v′ = v/gcd(k′, v). (3.4)

In terms of these variables, the condition (2.20), that is necessary for a non-empty low-

energy spectrum, takes the form u2k′ = 0 mod n, which is equivalent to demanding that

the a priori rational number w defined as

w = u/v′ (3.5)

be an integer.

For a given value of w, possible unbroken subalgebras h of su(n) are of the form

h = s ⊕ u(1)r ≃ su(w1) ⊕ . . . ⊕ su(wr+1) ⊕ u(1)r, (3.6)

for some partition

w1 + . . . wr+1 = w (3.7)

of w into r + 1 parts. To describe the corresponding holonomies, we define w′, t, and

t1, . . . , tr+1 by

w′ = gcd(w1, . . . , wr+1)

t = w/w′

t1 = w1/w
′

. . .

tr+1 = wr+1/w
′, (3.8)

so that

t1 + . . . + tr+1 = t (3.9)

is a partition of t into relatively prime parts. The holonomies may then be conjugated to

a subgroup

SU(v) ⊗ SU(v′) ⊗ SU(w′) ⊗ U(t) ⊂ SU(n), (3.10)

where they take the form

U1 = A ⊗ 1lv′ ⊗ 1lw′ ⊗ T1

U2 = B ⊗ 1lv′ ⊗ 1lw′ ⊗ T2

U3 = 1lv ⊗ A′ ⊗ 1lw′ ⊗ T3

U4 = 1lv ⊗ B′ ⊗ 1lw′ ⊗ T4. (3.11)

Here A and B are some fixed SU(v) matrices that fulfill the almost commutation relations

ABA−1B−1 = exp(2πi/v)1lv, (3.12)
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and A′ and B′ are fixed SU(v′) matrices that obey

A′B′A′−1B′−1 = exp(2πik′/v)1lv′ . (3.13)

We may for example choose

A =













eiπ(−v+1)/v 0 . . . 0

0 eiπ(−v+3)/v . . . 0
...

. . .
...

0 . . . . . . eiπ(v−1)/v













(3.14)

and

B =













0 1 · · · 0
... 0

. . .
...

0 0 1

(−1)v−1 0 . . . 0













(3.15)

and similarly for A′ and B′. The Ti are block-diagonal matrices of the form

Ti = diag
(

exp(iφ
(1)
i )1lt1 , . . . , exp(iφ

(r+1)
i )1ltr+1

)

, (3.16)

where the angular variables φ
(1)
i , . . . , φ

(r+1)
i are subject to the restriction that the complete

matrices Ui in (3.11) should be elements of SU(n) (rather than of U(n)).

A large gauge transformation parametrized by c = cidxi ∈ H1(T 4, Zn) acts on the

holonomies according to

Ui 7→ e2πici/nUi. (3.17)

However, multiplication of U1 or U2 by e2πi/v is equivalent to conjugation by the matrices

B or A respectively, and multiplication of U3 or U4 by e2πik′/v is equivalent to conjugation

by B′ or A′. Furthermore multiplication of any Ui by e2πi/t can be absorbed by shifting

the angles in the expression for Ti. This implies that transformations for which

c1

n
= 0 mod

gcd(v, t)

vt
c2

n
= 0 mod

gcd(v, t)

vt
c3

n
= 0 mod

gcd(v, k′t)

vt
c4

n
= 0 mod

gcd(v, k′t)

vt
(3.18)

are trivial.

Since the number of normalisable states in s ≃ su(w1) ⊕ . . . ⊕ su(wr+1) quantum

mechanics with 16 supercharges is dim Vs = 1, there is a single rank r continuum of quantum

states associated with each connected component Mh
a of the space of holonomies Mh with

unbroken algebra h. These components are permuted by large gauge transformations.

Diagonalizing this action, we find that there is one continuum for each value of the electric
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’t Hooft flux e = 1
6eijkdxidxjdxk ∈ H3(T 4, Zn) such that the components satisfy the

conditions

e234 ∈
vt

gcd(v, t)
Zn

e134 ∈
vt

gcd(v, t)
Zn

e124 ∈
vt

gcd(v, k′t)
Zn

e123 ∈
vt

gcd(v, k′t)
Zn. (3.19)

We may now describe the low-energy spectrum in an SL5(Z) covariant form as appro-

priate for the (2, 0) theory of type Φ = An−1: Let

n1 + . . . + nr+1 = n (3.20)

be a partition of n into r + 1 parts. To these data is associated a set of rank r continua of

states, one for every value of f = m + e ∈ H3(T 5, Zn) that is divisible by

t =
n

gcd(n1, . . . , nr+1)
(3.21)

and obeys the constraint (2.22).

4. The D-series

The simply connected group corresponding to type Φ = Dn is

G = Spin(2n), (4.1)

i.e. the universal double cover of the group SO(2n) of unimodular orthogonal 2n × 2n

matrices. The center C of G is

C = {0, v, s, c}. (4.2)

Here the trivial element 0 and the non-trivial element v (for ”vector”) project to the

identity element 1l2n of SO(2n), whereas the non-trivial elements s and c (for ”spinor” and

”cospinor” respectively) project to the non-trivial center element −1l2n of SO(2n). Our first

aim is to describe the SL4 orbits [m] of m ∈ H2(T 4, C) and how they give rise to SL5(Z)

orbits [f ] of f = m + e ∈ H3(T 5, C) by choosing different values of e ∈ H3(T 4, C).

To begin with, we consider the quotient of C by the subgroup generated by v. This

quotient group is isomorphic to Z2. We let mv ∈ H2(T 4, Z2) denote the corresponding

reduction of m ∈ H2(T 4, C) modulo v:

mv = m mod v. (4.3)

There are 3 different SL4(Z) orbits of mv, that we denote as [mv] = 0, 1, 2 respectively.

These symbols 0, 1, 2 are fairly arbitrary, but could be interpreted as the number of ob-

structions to having a vector structure on the bundle. We say that the bundles with
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#

[mv] = 0 mv = 0 1

1 mv 6= 0,Pf(mv) = 0 35

2 Pf(mv) = 1 28

64

Table 1: SL4(Z) orbits of mv, defining equations, and cardinalities.

[mv] = 0, 1, 2 have vector structure, half vector structure, and no vector structure respec-

tively. Table 1 gives the equations defining these orbits and their cardinalities. For the

bundles with vector structure, i.e. the [mv] = 0 bundles, we have

m = v m̃ (4.4)

for some m̃ ∈ H2(T 2, Z2). The SL4(Z) orbit of m is thus determined by the orbit [m̃] of

m̃, which we denote with the symbols 0, 1, 2 introduced in the previous paragraph.

For the bundles with half vector structure, i.e. the [mv] = 1 bundles, and the bundles

with no vector structure, i.e. the [mv] = 2 bundles, we have to treat the cases of n odd and

n even separately.

4.1 n odd

When n is odd, C ≃ Z4 with the following identifications:

0 = 0

s = 1

v = 2

c = 3. (4.5)

For m ∈ H2(T 4, Z4), we thus have

mv = m mod 2 ∈ H2(T 4, Z2). (4.6)

There are 7 different SL4(Z) orbits of m ∈ H2(T 4, Z4) that we denote as follows:

[m] = 0, 0′, 0′′,

1, 1′

2, 2′. (4.7)

The orbits [m] = 0, 0′, 0′′ have vector structure, so that m = v m̃ for some m̃ ∈ H2(T 4, Z2).

They have [m̃] = 0, 1, 2 respectively. The orbits [m] = 1, 1′ both have half vector structure,

i.e. [mv] = 1, and are distinguished by having Pf(m) = 0, 2 modulo 4 respectively. The

orbits [m] = 2, 2′ both have no vector structure, i.e. [mv] = 2, and are distinguished by

having Pf(m) = 1, 3 modulo 4 respectively.
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[m] = 0 0′ 0′′ 1 1′ 2 2′ #

[f ] = 0 1 1

0′ 15 4 155

0′′ 12 16 868

1 240 48 16 19840

1′ 192 240 48 64 138880

2 192 192 256 256 888832

# 1 35 28 1120 1120 896 896

Table 2: SL5(Z) orbits of f and their decomposition into SL4(Z) orbits of m for n odd.

Choosing an arbitrary representative m ∈ H2(T 2, Z4) of an SL4(Z) orbit [m] and

taking e = 0 in H3(T 4, Z4) gives rise to an f = m + e ∈ H3(T 5, Z4), whose SL5(Z) orbit

[f ] we denote with the same symbol as the orbit [m]. However, the two orbits [m] = 2 and

[m] = 2′ give rise to a single orbit, which we denote as [f ] = 2. Taking a non-vanishing

value of e may give rise to another orbit [f ], i.e. not the orbit denoted by the same symbol

as the orbit [m]. But it turns out that no further SL5(Z) orbits appear, i.e. the complete

list is

[f ] = 0, 0′, 0′′,

1, 1′,

2. (4.8)

We say that the [f ] in the first, second, and third line have vector structure, half vector

structure, and no vector structure respectively. In table 2, the columns correspond to the

SL4(Z) orbits [m], and the rows correspond to the SL5(Z) orbits [f ]. The symbols and the

cardinalities of the orbits are given in the first and last row or column respectively. The

entries are the number of values of e ∈ H3(T 4, Z4) that give rise to a f ∈ H3(T 5, Z4) in

a certain orbit [f ] for a given representative m ∈ H2(T 4, Z4) of an orbit [m]: The inner

product on C is determined by

s · s =
1

4
mod 1. (4.9)

It follows that an f ∈ H3(T 5, C) such that

[f ] = 1′, 2, (4.10)

has a non-vanishing value of f · f ∈ H1(T 5, C), and thus an empty low-energy spectrum.

4.2 n even

When n is even, C ≃ Z2 × Z2 with the following identifications:

0 = (0, 0)

s = (1, 0)

v = (1, 1)

c = (0, 1). (4.11)
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The theory is invariant under an S2 group of outer automorphism which permutes the

elements s and c while leaving v invariant.

We decompose m ∈ H2(T 4, Z2 × Z2) uniquely as

m = s ms + cmc (4.12)

with ms,mc ∈ H2(T 2, Z2). We then have

mv = ms + mc ∈ H2(T 4, Z2). (4.13)

We denote the SL4(Z) orbits of ms, mc, mv ∈ H2(T 4, Z2) by [ms], [mc], [mv ] = 0, 1, 2 as

described above. The SL4(Z) orbit of m is completely determined by these, and we denote

it as

[m] = [ms][mc][mv]. (4.14)

Not all combinations of [ms], [mc], and [mv] are possible, though, and the complete list is

[m] = 000, 110, 220,

011, 101, 111, 221, 211, 121,

022, 202, 112, 122, 212, 222, (4.15)

with the [m] in the first, second, and third lines having vector structure, half vector

structure, and no vector structure respectively. For the cases with vector structure, m̃ ∈

H2(T 4, Z2) is given by

m̃ = ms = mc. (4.16)

Again, taking e = 0 in H3(T 4, Z2 × Z2) for some representative m ∈ H2(T 4, Z2 × Z2)

of an SL4(Z) orbit [m] gives an f = m + e ∈ H3(T 5, Z2 × Z2) whose SL5(Z) orbit [f ]

we denote with the same symbol as [m]. All orbits [f ] obtained in this way are distinct.

Taking a non-vanishing value of e may give rise to another orbit [f ], i.e. not the orbit

denoted by the same symbol as [m]. In this way, some further orbits appear: The orbit

[m] = 222 gives rise not only to the orbit [f ] = 222, but also to another orbit which we

denote as [f ] = 222′. Similarly, each of the orbits [m] = 122, 212, 221 give rise not only to

[f ] = 122, 212, 221 respectively, but also to [f ] = 222′ and to a further orbit that we denote

as [f ] = 122, 212′ , 221′ respectively. The complete list of SL5(Z) orbits is thus

[f ] = 000, 110, 220,

011, 101, 111, 221, 211, 121,

022, 202, 112, 122, 212, 222, 122′ , 212′, 221′, 222′. (4.17)

We say that [f ] in the first, second, and third row has vector structure, half vector struc-

ture, and no vector structure respectively. In table 3, the columns correspond to the SL4(Z)

orbits [m], and the rows correspond to the SL5(Z) orbits [f ]. The symbols and the cardinal-

ities of the orbits are given in the first and last row or column respectively. The entries are

the number of values of e ∈ H3(T 4, Z2×Z2) that give rise to an f = m+e ∈ H3(T 5, Z2×Z2)

in a certain orbit [f ] for a given representative m ∈ H2(T 4, Z2 × Z2) of an orbit [m]. The
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[m] = 000 110 220 011 101 111 221 211 121 022 202 112 122 212 222 #

[f ] = 000 1 1

110 15 4 155

220 12 16 868

011 15 4 155

101 15 4 155

111 210 12 12 12 8 6510

221 36 8 16 13020

211 48 48 8 16 17360

121 48 48 8 16 17360

022 12 16 868

202 12 16 868

112 48 48 8 16 17360

122 36 8 16 13020

212 36 8 16 13020

222 8 16 10416

122′ 96 32 48 240 48 48 104160

212′ 96 32 48 240 48 48 104160

221′ 96 240 32 48 48 48 104160

222′ 96 192 144 144 144 192 192 240 624960

# 1 35 28 35 35 630 420 560 560 28 28 560 420 420 336

Table 3: SL5(Z) orbits of f and their decomposition into SL4(Z) orbits of m for n even.

inner product on C depends on whether n = 2 or n = 0 modulo 4: In the first case, we

have
s c

s 1
2 0

c 0 1
2

mod 1,

and in the second case,
s c

s 0 1
2

c 1
2 0

mod 1.

It follows that the orbits

[f ] = 211, 121,

112, 222, 122′ , 212′, 221′, 222′ (4.18)

for n = 0 mod 4, and the orbits

[f ] = 211, 121,

022, 202, 122, 212, 122′ , 212′, 221′, 222′ (4.19)

for n = 2 mod 4, have empty low-energy spectra. The orbits

[f ] = 211, 121,

122′, 212′, 221′, 222′ (4.20)

thus have empty low-energy spectra for all even n.
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4.3 The generating functions

Our aim is to compute the degeneracies N r
f (Dn) of rank r continua with characteristic

class f ∈ H3(T 5, C) in the Φ = Dn theory. It is convenient, however, to treat all values of

n and r simultaneously by introducing a set of generating functions Zf defined as

Zf (q, y) =
∞
∑

k=0

∞
∑

r=0

N r
f (D2k+1)q

4k+2yr (4.21)

for the case of n odd, and

Zf (q, y) =
∞
∑

k=0

∞
∑

r=0

N r
f (D2k)q4kyr (4.22)

for the case of n even. We will compute these functions in terms of some other functions

P , Q, and R, that we will now define.

P and Q are the generating functions for the dimensions of the spaces Vs of normaliz-

able zero-energy states in s quantum mechanics with 16 supercharges for s an orthogonal

or symplectic algebra:

P (q) =

∞
∑

n=0

dim Vso(n)q
n =

∞
∏

k=1

(1 + q2k−1)

= 1 + q + q3 + q4 + q5 + q6 + q7 + 2q8 + . . . (4.23)

and

Q(q) =
∞
∑

n=0

dim Vsp(2n)q
2n =

∞
∏

k=1

(1 + q2k)

= 1 + q2 + q4 + 2q6 + 2q8 + 3q10 + . . . (4.24)

It will be convenient to decompose P (q) into terms Peven(q) and Podd(q) with even and

odd powers of q respectively, i.e.

Peven(q) =
1

2
(P (q) + P (−q))

Podd(q) =
1

2
(P (q) + P (−q)) . (4.25)

R is a generating function for the number N r
k of conjugacy classes of subalgebras of su(k)

with abelian term u(1)r−1. This is given by the number of partitions of k into r parts, so

we define

R(q, y) =

∞
∑

k=1

∞
∑

r=1

N r
kyrq2k =

∞
∏

k=1

(1 − yq2k)−1

= 1 + yq2 + (y + y2)q4 + (y + y2 + y3)q6 + (y + 2y2 + y3 + y4)q8 + . . .

(4.26)
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4.4 Bundles with vector structure

As described above, these bundles have mv = m mod v ∈ H2(T 4, Z2) vanishing, i.e.

[mv] = 0. Thus m = vm̃ for some m̃ ∈ H2(T 4, Z2), and the orbits are determined by

[m̃] = 0, 1, 2. This corresponds to

[m] = 0, 0′, 0′′ (4.27)

for n odd, and

[m] = 000, 110, 220 (4.28)

for n even.

The SO(2n) projections of the holonomies Ui may be conjugated to a subgroup

SO(2s) × SO(2n − 2s) ⊂ SO(2n), (4.29)

for certain values of s, 0 ≤ s ≤ n, and then take the form

Ui = (Vi, Ti). (4.30)

Here the Vi are given by

V1 = diag(+1l,+1l,+1l,+1l,+1l,+1l,+1l,+1l,−1l,−1l,−1l,−1l,−1l,−1l,−1l,−1l)

V2 = diag(+1l,+1l,+1l,+1l,−1l,−1l,−1l,−1l,+1l,+1l,+1l,+1l,−1l,−1l,−1l,−1l)

V3 = diag(+1l,+1l,−1l,−1l,+1l,+1l,−1l,−1l,+1l,+1l,−1l,−1l,+1l,+1l,−1l,−1l)

V4 = diag(+1l,−1l,+1l,−1l,+1l,−1l,+1l,−1l,+1l,−1l,+1l,−1l,+1l,−1l,+1l,−1l) (4.31)

with some multiplicities

k, k4, k3, k34, k2, k24, k23, k234, k1, k14, k13, k134, k12, k124, k123, k1234 (4.32)

of the 16 columns. It is convenient to think of these columns as associated with the points of

the four-dimensional vector space Z4
2 over the finite field Z2. Like many of the constructions

in the rest of the paper, this may be interpreted in terms of orientifolds. (See e.g. [9, 10].)

The Ti can be chosen in a (SO(2))n−s subgroup, i.e. a maximal torus, of SO(2n − 2s).

In each factor, they are parametrized by a quartet (θ1, θ2, θ3, θ4) of angular variables and

take the form

Ti =

(

cos θi sin θi

− sin θi cos θi

)

.

Generically, the unbroken subalgebra is h ≃ u(1)n−s. However, if l of the quartets

(θ1, θ2, θ3, θ4) of angular variables are equal, a factor u(1)l gets enhanced to u(l) ≃ su(l)⊕

u(1). If furthermore this common value of the l quartets is such that all entries are equal to

0 or π, the corresponding factors of the Ti equal one of the 16 special values in (4.31) with

multiplicity 2l. There is then further enhancement to so(2l+k′), where k′ is the multiplicity

associated with that point in Z4
2. So only the modulo 2 reductions of the multiplicities are

invariant under continuous deformations of the angles θi.
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2d = 0 2 4 6 8 10 12 14 16

[m̃] = 0 1 30 1

1 4 24 4

2 16 16

Table 4: Solutions to eqs. (4.33) with 2d odd multiplicities.

The modulo 2 reductions of the 16 multiplicities are constrained by the following 11

linear equations over Z2:

0 = k+k4+k3+k34+k2+k24+k23+k234

+k1+k14+k13+k134+k12+k124+k123+k1234

0 = k1+k14+k13+k134+k12+k124+k123+k1234

0 = k2+k24+k23+k234+k12+k124+k123+k1234

0 = k3+k34+k23+k234+k13+k134+k123+k1234

0 = k4+k34+k24+k234+k14+k134+k124+k1234

m̃12 = k12+k124+k123+k1234

m̃13 = k13+k134+k123+k1234

m̃14 = k14+k134+k124+k1234

m̃23 = k23+k234+k123+k1234

m̃24 = k24+k234+k124+k1234

m̃34 = k34+k234+k134+k1234. (4.33)

The first equation expresses the fact that the sum 2s of the multiplicities is even. The

next four equations follow from the requirement that the Vi should be elements of SO(2s)

(rather than O(2s)). The last six equations ensure that the holonomies obey the correct

almost commutation relations. There are 216−11 = 32 solutions to these equations, each of

which is characterized by the number 2d, 0 ≤ 2d ≤ 16, of multiplicities that are equal to 1

modulo 2. The number of solutions, depending on the values of [m̃] and 2d, are given in

table 4. Recalling that dimVsu(l) = 1 and that dimVso(n) for n even and odd are described

by the generating functions Peven and Podd respectively introduced in (4.25), we see that

the generating function Z for the total number of continua of states associated with such

a solution is given by

R(q, y)P 2d
odd(q)P 16−2d

even (q), (4.34)

where the function R is defined in (4.26). Here, the coefficient of yrq2n is given by the

number of rank r continua in the Φ = Dn theory.

4.4.1 Electric ’t Hooft flux with vector structure

Generically, each solution to (4.33) corresponds to a single component Mα of rank rα =

n − d of the moduli space M of flat connections. This is true if the different liftings of

the holonomies from SO(2n) to Spin(2n), i.e. large gauge transformations parametrized by
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2d = 0 2 4 6 8 10 12 14 16

[m̃] = 0 1 14 1

1 4 8 4

2

Table 5: Solutions to eqs. (4.33) and (4.36).

v ∈ C, are equivalent modulo simultaneous conjugation of the holonomies, and implies

that e ∈ H3(T 4, C) will be of the form

e = v ẽ (4.35)

for some ẽ ∈ H3(T 4, Z2). We say that such an e has vector structure.

Large gauge transformations parametrized by s ∈ C (or equivalently by c ∈ C, since

we still assume that v = s− c acts trivially) act by interchanging the points of Z4
2 pairwise.

There are 15 non-trivial such transformations, and generically they act freely, but it might

be that a particular transformation has a fixed point. A necessary condition for this to

happen is that the multiplicities are pairwise equal. For example, symmetry in the 1-

direction on T 4 requires that

k = k1

k2 = k12

k3 = k13

k4 = k14

k23 = k123

k24 = k124

k34 = k134

k234 = k1234 (4.36)

in addition to (4.33). When m is such that [m̃] = 0, each of the 15 a priori non-trivial

transformations may obey such a symmetry requirement. When [m̃] = 1 this applies to

only 3 of them, and when [m̃] = 2 to none. For a given symmetry compatible with a

certain m, there are now 16 solutions to the equations (4.33) and (4.36) characterized by

the number 2d of multiplicities that are equal to 1 modulo 2. See table 5. Furthermore,

the quantum mechanical states in the Vs spaces associated with the points of Z4
2 must be

pairwise equal for the action to have a fixed point. The generating function for the number

of these invariant states (which are a subset of the total number of states computed above)

is thus given by

R(q, y)P d
odd(q2)P 8−d

even(q2). (4.37)

Still assuming that large gauge transformations parametrized by v ∈ C act trivially

in all directions on the torus, we may now determine the number of continua of states for

different values of the electric ’t Hooft flux e ∈ H3(T 4, C). By assumption, e = vẽ for some

ẽ ∈ H3(T 4, Z2). If all large gauge transformations parametrized by s ∈ C (or equivalently
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by c ∈ C) act freely, there will be a fraction 1
16 of the total number for each of the 16

possible values of ẽ. But if a certain large gauge transformation has a fixed point, the

corresponding component of ẽ must be 0. There will then be a fraction 1
8 = 1

16 + 1
16 of the

total number for each of the remaining 8 possible values of ẽ.

We begin with [m̃] = 0, i.e. [m] = 0 for n odd and [m] = 000 for n even. Taking ẽ = 0

gives [f ] = 0 and [f ] = 000 respectively. It is convenient to add the corresponding generat-

ing functions Z0 and Z000 (which are easily distinguished, since they only contain powers

of the form q4k+2 and q4k respectively). Since there are 15 large gauge transformations

that may have a fixed point, we get

Z0 + Z000 =
1

16
R(q, y)

(

P 16
even(q) + 30P 8

odd(q)P 8
even(q) + P 16

odd(q)
)

+
15

16
R(q, y)

(

P 8
even(q2) + 14P 4

odd(q2)P 4
even(q2) + P 8

odd(q2)
)

. (4.38)

For each of the 15 non-zero values of ẽ, we have [f ] = 0′ and [f ] = 110 for n odd and n

even respectively. Taking into account that the total number of states is

R(q, y)
(

P 16
even(q) + 30P 8

even(q)P 8
odd(q) + P 16

odd(q)
)

(4.39)

we see that the sum of the corresponding generating functions is

Z0′ + Z110 =
1

16
R(q, y)

(

P 16
even(q) + 30P 8

odd(q)P 8
even(q) + P 16

odd(q)
)

−
1

16
R(q, y)

(

P 8
even(q2) + 14P 4

odd(q2)P 4
even(q2) + P 8

odd(q2)
)

(4.40)

Next, we consider [m̃] = 1, i.e. [m] = 0′ for n odd and [m] = 110 for n even. There

are 4 values of ẽ that give [f ] = 0′ and [f ] = 110, while the remaining 12 give [f ] = 0′′ and

[f ] = 220 for n odd and n even respectively. The total number of states is

R(q, y)(4P 12
even(q)P 4

odd(q) + 24P 8
even(q)P 8

odd(q) + 4P 4
even(q)P 8

odd(q)), (4.41)

and there are 3 large gauge transformations that may have a fixed point. We thus get

Z0′ + Z110 =
1

16
R(q, y)

(

4P 12
even(q)P 4

odd(q) + 24P 8
even(q)P 8

odd(q) + 4P 4
even(q)P 8

odd(q)
)

+
3

16
R(q, y)

(

4P 6
even(q2)P 2

odd(q2)

+8P 4
even(q2)P 4

odd(q2) + 4P 2
even(q2)P 6

odd(q2)
)

(4.42)

and

Z0′′ + Z220 =
1

16
R(q, y)

(

4P 12
even(q)P 4

odd(q) + 24P 8
even(q)P 8

odd(q) + 4P 4
even(q)P 8

odd(q)
)

−
1

16
R(q, y)

(

4P 6
even(q2)P 2

odd(q2)

+8P 4
even(q2)P 4

odd(q2) + 4P 2
even(q2)P 6

odd(q2)
)

. (4.43)

Finally, we take [m̃] = 2, i.e. [m] = 0′′ for n odd and [m] = 220 for n even. For all ẽ,

we get [f ] = 0′′ and [f ] = 220 respectively. The generating functions are given by

Z0′′ + Z220 =
1

16
R(q, y)

(

16P 10
even(q)P 6

odd(q) + 16P 6
even(q)P 10

odd(q)
)

. (4.44)
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2d = 0 2 4 6 8 10 12 14 16

[m̃] = 0 1 1

1 2

2

Table 6: Solutions to eqs. (4.33) and (4.45) or (4.46).

4.4.2 Electric ’t Hooft flux without vector structure

We must now consider the possibility that different liftings of the holonomy from SO(4k+2)

to Spin(4k+2), i.e. large gauge transformations parametrized by v ∈ C, give rise to different

states. The corresponding component of e ∈ H3(T 4, C) will then equal s or c. We say that

such e have no vector structure.

This will happen if the 8 multiplicities associated with the points of a codimension 1

hyperplane of Z4
2 are zero. For a large gauge transformation in e.g. the 4-direction on T 4,

this means that either

k = k1 = k2 = k3 = k12 = k13 = k23 = k123 = 0 (4.45)

or

k4 = k14 = k24 = k34 = k124 = k134 = k234 = k1234 = 0 (4.46)

in addition to (4.33). (This choice of direction is only possible if m̃14 = m̃24 = m̃34 = 0.)

Indeed, if a point from each set of 8 is occupied, then conjugation by a π
2 rotation in a

suitable 2-plane will interchange the two liftings, according to the gamma-matrix formula

exp

(

π

2
γ1γ2

)

γ2 exp(−
π

2
γ1γ2) = −γ2. (4.47)

Also, the quartets of angles (θ1, θ2, θ3, θ4) at generic values are constrained to be pairwise

equal, since the lifting of the holonomy is otherwise equivalent to shifting an angle by 2π.

The two sets of 8 equations are related by a large gauge transformation parametrized by

v ∈ C in the chosen direction, i.e. the 4-direction in this example. So there will be a

fraction 1
2 of the extra states for each of the values s and c of the corresponding component

of e.

Each set of 8 equations reduces the number of independent multiplicites to 8. Further-

more, 4 of the equations in (4.33) are identically satisified, leaving us with 7 independent

equations, so there are 28−7 = 2 solutions. Again, they are characterized by the number

2d of multiplicities that are equal to 1 modulo 2. See table 6. Each solution gives rise to a

generating function

R(q2, y)P 2d
odd(q)P 8−2d

even (q). (4.48)

Finally, we must also consider the possibility of combining the two phenomena de-

scribed so far: A configuration could be such that large gauge transformations parametrized

by s or c act with a fixed point in one direction and also admit non-trivial large gauge

transformations parametrized by v in some other direction. This is described by the equa-

tions (4.33), (4.36), and (4.45) or (4.46). Depending on the value of m̃, there are various
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2d = 0 2 4 6 8 10 12 14 16

[m̃] = 0 1 1
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Table 7: Solutions to eqs. (4.33) and (4.36) and (4.45) or (4.46).

possibilities. See table 7 (which actually agrees with table 6). where, however, each solution

now gives rise to a generating function

R(q2, y)P d
odd(q2)P 4−d

even(q2). (4.49)

For n odd, low-energy states for which e ∈ H3(T 4, Z4) has no vector structure always

have a value of f in the orbit [f ] = 1. For n even, we have to consider the different values

of [m̃] separately:

For [m̃] = 0, we get [f ] = 011 or [f ] = 101 if the remaining components of e are 0 and

[f ] = 111 otherwise. We thus get

Z1 + Z011 = Z1 + Z101

=
1

8
R(q2, y)

(

P 8
even(q) + P 8

odd(q)
)

+
7

8
R(q2, y)

(

P 4
even(q2) + P 4

odd(q2)
)

. (4.50)

and

Z1 + Z111 =
1

8
R(q2, y)

(

P 8
even(q) + P 8

odd(q)
)

−
1

8
R(q2, y)

(

P 4
even(q2) + P 4

odd(q2)
)

, (4.51)

since there are 7 large gauge transformations parametrized by s ∈ C or c ∈ C that may

act with a fixed point.

For [m̃] = 1, we get [f ] = 111 if the remaining components of e are 0 and [f ] = 221

otherwise:

Z1 + Z111 =
1

4
R(q2, y)P 4

even(q)P 4
odd(q)

+
3

4
R(q2, y)P 2

even(q2)P 2
odd(q2). (4.52)

and

Z1 + Z221 =
1

4
R(q2, y)P 4

even(q)P 4
odd(q)

−
1

4
R(q2, y)P 2

even(q2)P 2
odd(q2), (4.53)

since there are 3 large gauge transformations parametrized by s ∈ C or c ∈ C that may

act with a fixed point.

For [m̃] = 2, there are no low-energy states for which e has no vector structure.
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4.5 Bundles with half vector structure

As described above, these bundles have m mod v = mv ∈ H2(T 4, Z2) such that [mv] = 1.

We may e.g. take

mv
ij =











0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0











.

The corresponding orbits are

[m] = 1, (1′) (4.54)

for n odd, and

[m] = 011, 101, 111, 221, (211, 121) (4.55)

for n even, where the 3 orbits in parentheses have empty low-energy spectra.

The holonomies may be conjugated to a subgroup

Spin(2n) ⊃ Spin(2n − 4s) × Spin(4) × . . . × Spin(4)/ ∼

≃ Spin(2n − 4s) × SU(2) × SU(2) × . . . × SU(2) × SU(2)/ ∼, (4.56)

for certain values of s, 0 ≤ s ≤ n
2 . The equivalence relation ∼ identifies the center element

v of Spin(2n−4s) with the center element v = (−1l2,−1l2) of one of the s Spin(4) ≃ SU(2)×

SU(2) factors. The decomposition into irreducible terms of the adjoint representation of

Spin(2n) under this subgroup is

1

2
2n(2n − 1) =

1

2
(2n − 4s)(2n − 4s − 1)

⊕

s
⊕

1

6

⊕

1

2
s(s−1)
⊕

1

(4, 4)

⊕
s
⊕

1

(2n − 4s, 4)

=
1

2
(2n − 4s)(2n − 4s − 1)

⊕

s
⊕

1

(3, 1) ⊕ (1, 3)

⊕

1

2
s(s−1)
⊕

1

(2, 2, 2, 2)

⊕
s
⊕

1

(2n − 4s, 2, 2). (4.57)

The holonomies now take the form

Ui =
(

Vi,W
(1)
i , T

(1)
i , . . . ,W

(s)
i , T

(s)
i

)

. (4.58)
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The Vi ∈ Spin(2n−4s) are chosen to obey the almost commutation relations determined by

m. For n odd, the simplest example is for s = 1
2 (n− 3), where we can use the isomorphism

Spin(2n − 4s) = Spin(6) ≃ SU(4) and the construction described for the Φ = A3 model.

For n even, the simplest example is for s = 1
2n, so that Spin(2n − 4s) ≃ 1 is the trivial

group. In any case, we will define s so that all 1
2(2n − 4s)(2n − 4s − 1) generators in the

adjoint representation of Spin(2n − 4s) are broken by the Vi.

Each of the s quadruples W
(1)
i , . . . ,W

(s)
i ∈ SU(2) is chosen to obey the almost commu-

tation relations determined by mv ∈ H2(T 4, Z2), where Z2 is identified with the center of

SU(2). This is given by the construction described for the Φ = A1 model. These quadruples

thus break all generators of the (3, 1) terms.

Finally, the s quadruples T
(1)
i , . . . , T

(s)
i take their values in a maximal torus of SU(2)

generated by e.g. the Pauli matrix σ = σ3, i.e. each of them is of the form











T1

T2

T3

T4











=











exp(iσθ1)

exp(iσθ2)

exp(iσθ3)

exp(iσθ4)











(4.59)

for some quartet of angular variables (θ1, θ2, θ3, θ4). With the value of mv given e.g.

by (4.54), T1 and T2 are defined modulo the non-trivial center element −1l2 of SU(2).

Generically, these quadruples break the generators of the (1, 3) terms to u(1)s, but for the

4 particular values











T1

T2

T3

T4











=











1l2
1l2
1l2
1l2











,











1l2
1l2
−1l2
1l2











,











1l2
1l2
1l2
−1l2











,











1l2
1l2
−1l2
−1l2











, (4.60)

the corresponding u(1) term is enhanced to su(2) ≃ sp(2).

To analyze the (2, 2, 2, 2) terms, we need the spectrum of one of the 1
2s(s − 1) pairs

Wi ⊗ W ′
i on the representation (2, 2) of SU(2) × SU(2). e.g. with mv as in (4.54), we get











W1 ⊗ W ′
1

W2 ⊗ W ′
2

W3 ⊗ W ′
3

W4 ⊗ W ′
4











=











1

1

1

1











,











1

−1

1

1











,











−1

1

1

1











,











−1

−1

1

1











. (4.61)

It follows that if e.g. l quartets Ti are equal (up to signs), there are 2 · 1
2 l(l − 1) unbroken

generators, and u(1)l is enhanced to u(l) ≃ su(l) ⊕ u(1). Furthermore, if these l quartets

Ti take one of the four particular values above, there are actually 4 · 1
2 l(l − 1) unbroken

generators, and sp(2)l is enhanced to sp(2l). Finally, if these l quartets Ti take one of the
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12 particular values











T1

T2

T3

T4











=











1l2
iσ

1l2
1l2











,











1l2
iσ

1l2
−1l2











,











1l2
iσ

−1l2
1l2











,











1l2
iσ

−1l2
−1l2











,











iσ

1l2
1l2
1l2











,











iσ

1l2
1l2
−1l2











,











iσ

1l2
−1l2
1l2











,











iσ

1l2
−1l2
−1l2











,











iσ

iσ

1l2
1l2











,











iσ

iσ

1l2
−1l2











,











iσ

iσ

−1l2
1l2











,











iσ

iσ

−1l2
−1l2











, (4.62)

there are also 4 · 1
2 l(l − 1) unbroken generators, and u(1)l is enhanced to so(2l).

To analyze the (2n−4s, 2, 2) terms, we need the spectrum of one of the s pairs Vi⊗Wi

on the representation (2n− 4s, 2) of Spin(2n− 4s)×SU(2). Consider the s = 1
2 (n− 3) case

for n odd. e.g. with mv as in (4.54), there are four inequivalent choices of Vi, characterized

by a pair
(

c3

c4

)

=

(

1

1

)

,

(

1

−1

)

,

(

−1

1

)

,

(

−1

−1

)

.

The corresponding spectra on the representation (6, 2) are











V1 ⊗ W1

V2 ⊗ W2

V3 ⊗ W3

V4 ⊗ W4











=











1

i

c3

c4











,











1

−i

c3

c4











,











i

1

c3

c4











,











i

i

c3

c4











,











i

−1

c3

c4











,











i

−i

c3

c4











,











−1

i

c3

c4











,











−1

−i

c3

c4











,











−i

1

c3

c4











,











−i

i

c3

c4











,











−i

−1

c3

c4











,











−i

−i

c3

c4











. (4.63)

The four pairs in (4.63) correspond to the four columns of special values in (4.62). When l

quartets are equal to one of the three values in that column, so(2l) is enhanced to so(2l+1).

Still for n odd, 4 other solutions associated with the columns in (4.62) have so(2l) to

so(2l+1) enhancement when l quartets are equal to one the nine values not in that column.

12 solutions are associated with a row and a column, and have enhancement for the five

values that are in that row but not in that column, or not in that row but in that column.

Finally, 12 more solutions have enhancement for the seven values that are in that row and

in that column, or not in that row and not in that column.

So for n odd, the number of solutions where d = n − 2s of the special values (4.62)

have so(2l) enhanced to so(2l + 1) is given by table 8.
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d = 0 1 2 3 4 5 6 7 8 9 10 11 12

[m] = 1 4 12 12 4

Table 8: Solutions for bundles with half vector structure for n odd.

d = 0 1 2 3 4 5 6 7 8 9 10 11 12

[m] = 011 1 3 24 3 1

101 1 3 24 3 1

111 2 4 20 4 2

221 12 8 12

Table 9: Solutions for bundles with half vector structure for n even.

d = 0 1 2 3 4 5 6 7 8 9 10 11 12

[m] = 011 1 3 8 3 1

101 1 3 8 3 1

111 2 4 4 4 2

221

Table 10: Symmetric solutions.

The case n even may be analyzed in an analogous way: For [m] = 011 or [m] = 101,

one solution has no enhancement at any value, and one solution has enhancement at all

twelve values. Three solutions are associated with the rows, and have enhancement for the

four values in that row, and three more solutions have enhancement for the eight values

not in that row. Six solutions are associated with pairs of columns, and have enhancement

for the six values in either of these columns. Finally, eighteen solutions are associated with

a row and a pair of columns, and have enhancement for the six values that are in that row

and in either of these columns, or not in that row and in neither of these columns. For

[m] = 111, or [m] = 221, the value of m distinguishes between the row and the columns,

so the pattern is slightly more complicated. The results are summarized in table 9.

In all cases, the generating function for the total number of continua of states associated

with such a solution is

R(q2, y)Q(q2)4P d
odd(q2)P 12−d

even (q2). (4.64)

4.5.1 Electric ’t Hooft flux with vector structure

With mv as in (4.54), large gauge transformations parametrized by v ∈ C act trivially in

the 1- and 2-directions. In e.g. the 3-direction, it acts freely, unless the configuration is

symmetric under exchange of the first and the third columns and the second and the fourth

columns in (4.62). This cannot happen for n odd, so there we get

Z1 =
1

4
R(q2, y)Q(q2)4

(

4P 3
odd(q2)P 9

even(q2) + 12P 5
odd(q2)P 7

even(q2)

+12P 7
odd(q2)P 5

even(q2) + 4P 9
odd(q2)P 3

even(q2)
)

. (4.65)

For n even, the number of possibilities for this to happen are given in table 10. The gen-
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erating function for the total number of continua of states associated with such a solution

is

R(q2, y)Q(q4)2P
d/2
odd(q4)P 6−d/2

even (q4). (4.66)

For [m] = 011 or [m] = 101, we thus get

Z011 = Z101

=
1

4
R(q2, y)Q4(q2)

(

P 12
even(q2) + 3P 8

even(q2)P 4
odd(q2)

+24P 6
even(q2)P 6

odd(q2) + 3P 4
even(q2)P 8

odd(q2) + P 12
odd(q2)

)

+
3

4
R(q2, y)Q2(q4)

(

P 6
even(q4) + 3P 4

even(q4)P 2
odd(q4)

+8P 3
even(q4)P 3

odd(q4) + 3P 2
even(q4)P 4

odd(q4) + P 6
odd(q4)

)

Z111 =
1

4
R(q2, y)Q4(q2)

(

P 12
even(q2) + 3P 8

even(q2)P 4
odd(q2)

+24P 6
even(q2)P 6

odd(q2) + 3P 4
even(q2)P 8

odd(q2) + P 12
odd(q2)

)

−
1

4
R(q2, y)Q2(q4)

(

P 6
even(q4) + 3P 4

even(q4)P 2
odd(q4)

+8P 3
even(q4)P 3

odd(q4) + 3P 2
even(q4)P 4

odd(q4) + P 6
odd(q4)

)

. (4.67)

whereas for [m] = 111

Z111 =
1

4
R(q2, y)Q4(q2)

(

2P 10
even(q2)P 2

odd(q2) + 4P 8
even(q2)P 4

odd(q2)

+20P 6
even(q2)P 6

odd(q2) + 4P 4
even(q2)P 8

odd(q2) + 2P 2
even(q2)P 10

odd(q2)
)

+
1

4
R(q2, y)Q2(q4)

(

2P 5
even(q4)Podd(q4) + 4P 4

even(q4)P 2
odd(q4)

+4P 3
even(q4)P 3

odd(q4) + 4P 2
even(q4)P 4

odd(q4) + 2Peven(q4)P 5
odd(q4)

)

Z221 =
1

4
R(q2, y)Q4(q2)

(

2P 10
even(q2)P 2

odd(q2) + 4P 8
even(q2)P 4

odd(q2)

+20P 6
even(q2)P 6

odd(q2) + 4P 4
even(q2)P 8

odd(q2) + 2P 2
even(q2)P 10

odd(q2)
)

−
1

4
R(q2, y)Q2(q4)

(

2P 5
even(q4)Podd(q4) + 4P 4

even(q4)P 2
odd(q4)

+4P 3
even(q4)P 3

odd(q4) + 4P 2
even(q4)P 4

odd(q4) + 2Peven(q4)P 5
odd(q4)

)

. (4.68)

Finally, for [m] = 221

Z221 =
1

4
R(q2, y)Q4(q2)

(

12P 4
odd(q2)P 8

even(q2)

+8P 6
odd(q2)P 6

even(q2) + 12P 8
odd(q2)P 4

even(q2)
)

.

(4.69)

4.5.2 Electric ’t Hooft flux without vector structure

With mv as in (4.54), a large gauge transformation parametrized by s ∈ C or c ∈ C

acts trivially in the 3- and 4-directions. In e.g. the 1-direction, it acts non-trivially only

if the last two rows in (4.62) are empty. This cannot happen for n odd. For n even, the
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d = 0 1 2 3 4 5 6 7 8 9 10 11 12

[m] = 011 1 1

101 1 1

111 2

221

Table 11: Solutions with two empty rows in eqs. (4.62).

d = 0 1 2 3 4 5 6 7 8 9 10 11 12

[m] = 011 1 1

101 1 1

111 2

221

Table 12: Symmetric solutions with two empty rows in eqs. (4.62).

possibilities are given in table 11. The total number of continua of states for such a solution

is given by

R(q4, y)Q4(q2)P d
odd(q2)P 4−d

even(q2). (4.70)

Imposing symmmetry in e.g. the 3-direction gives the possibilites of table 12 (which actually

agrees with table 11). but with the number of states now given by

R(q4, y)Q2(q4)P
d/2
odd(q4)P 2−d/2

even (q4). (4.71)

For [m] = 011 or [m] = 101, we get

Z112 + Z022 = Z112 + Z202

=
1

4
R(q4, y)Q4(q2)

(

P 4
even(q2) + P 4

odd(q2)
)

+
3

4
R(q4, y)Q2(q4)

(

P 2
even(q4) + P 2

odd(q4)
)

Z112 + Z122 = Z112 + Z212

=
1

4
R(q4, y)Q4(q2)

(

P 4
even(q2) + P 4

odd(q2)
)

−
1

4
R(q4, y)Q2(q4)

(

P 2
even(q4) + P 2

odd(q4)
)

. (4.72)

For [m] = 111, we get

Z112 + Z122 = Z112 + Z212

=
1

4
R(q4, y)Q4(q2)2P 2

odd(q2)P 2
even(q2)

+
1

4
R(q4, y)Q2(q4)2Podd(q4)Peven(q4)

Z222 + Z122 = Z222 + Z212

=
1

4
R(q4, y)Q4(q2)2P 2

odd(q2)P 2
even(q2)

−
1

4
R(q4, y)Q2(q4)2Podd(q4)Peven(q4). (4.73)
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d = 0 1 2 3 4 5 6 7 8 9 10

[m] = 022 1 15 15 1

202 1 15 15 1

112 1 6 18 6 1

122 3 13 13 3

212 3 13 13 3

222 10 12 10

Table 13: Solutions for bundles with no vector structure.

Finally, for [m] = 221, this does not happen.

4.6 Bundles with no vector structure

As described above, these bundles have m mod v = mv ∈ H2(T 4, Z2) such that [mv] = 2.

For n odd, no such bundles admit low-energy states. For n even, the possibilities are

[m] = 022, 202, 112, 122, 212, 222. (4.74)

Possible unbroken subalgebras of so(2n) are of the form

h ≃ sp(2k1) ⊕ . . . ⊕ sp(2k6)

⊕so(n1) ⊕ . . . ⊕ so(n10)

⊕su(l1) ⊕ . . . ⊕ su(lr+1)

⊕u(1)r, (4.75)

such that the rank of h equals n
4 for n = 0 mod 4 and n−2

4 for n = 2 mod 4. Furthermore,

a number 0 ≤ d ≤ 10 of n1, . . . , n10 are odd and the remaining 10− d are even. Depending

on [m] and d, there are a number of solutions given in table 13. The total number of

continua of states for such a solution is given by

R(q4, y)Q6(q4)P d
odd(q4)P 10−d

even (q4). (4.76)

Large gauge transformations parametrized by v ∈ C always act trivially, and those

parametrized by s ∈ C or equivalently c ∈ C always act freely. We thus get the following

generating functions:

Z022 = Z202 = R(q4, y)Q6(q4)
(

P 10
even(q4) + 15P 4

odd(q4)P 6
even(q4)

+15P 6
even(q4)P 4

odd(q4) + P 10
odd(q4)

)

Z112 = R(q4, y)Q6(q4)
(

Podd(q4)P 9
even(q4) + 6P 3

odd(q4)P 7
even(q4)

+18P 5
even(q4)P 5

odd(q4) + 6P 7
odd(q4)P 3

even(q4) + P 9
odd(q4)Peven(q4)

)

Z122 = Z212 = R(q4, y)Q6(q4)
(

3P 2
odd(q4)P 8

even(q4) + 13P 4
odd(q4)P 6

even(q4)

+13P 6
even(q4)P 4

odd(q4) + 3P 8
odd(q4)P 2

even(q4)
)

Z222 = R(q4, y)Q6(q4)
(

10P 3
odd(q4)P 7

even(q4)

+12P 5
even(q4)P 5

odd(q4) + 10P 7
odd(q4)P 3

even(q4)
)

. (4.77)
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4.7 The results

The number of rank r continua of ’t Hooft flux f ∈ H3(T 5, C) in the Φ = Dn theory is

given by the coefficient of yrq2n in the power series expansion of the generating function

Zf (q, y). We have computed alternative expressions for these functions for f with vector

structure, half vector structure, and no vector structure, and found that they are given

by R(q, y), R(q2, y), and R(q4, y) respectively, times a polynomial in the functions Peven

and Podd with various arguments. The equality of these different expressions for a single

SL5(Z) orbit [f ] amounts to certain combinatorial identities for Peven and Podd, that may

be proven e.g. by relating them to modular forms. (See e.g. [11].) Here, however, we will

only expand the expressions for Z[f ](q, y) to the first few orders in q.

For n odd, one finds for f ∈ H3(T 5, Z4) with vector structure

Z0 = yq2

+(1 + 2y + y2 + y3)q6

+(32 + 35y + 4y2 + 3y3 + y4 + y5)q10

+(528 + 285y + 71y2 + 39y3 + 5y4 + 3y5 + y6 + y7)q14 + . . .

Z0′ = (1 + y)q6

+(32 + 12y + 2y2 + y3)q10

+(528 + 198y + 46y2 + 13y3 + 2y4 + y5)q14

+(6016 + 2626y + 772y2 + 213y3 + 47y4 + 13y5 + 2y6 + y7)q18 + . . .

Z0′′ = q6

+(32 + 7y + y2)q10

+(528 + 175y + 40y2 + 7y3 + y4)q14

+(6016 + 2547y + 743y2 + 183y3 + 40y4 + 7y5 + y6)q18 + . . . , (4.78)

for f with half vector structure

Z1 = q6

+(10 + y)q10

+(67 + 11y + y2)q14

+(350 + 78y + 11y2 + y3)q18 + . . .

Z1′ = 0, (4.79)

and for f with no vector structure

Z2 = 0. (4.80)
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For n even, one finds for f ∈ H3(T 5, Z2 × Z2) with vector structure

Z000 = 1

+(1 + y + y2)q4

+(32 + 3y + 3y2 + y3 + y4)q8

+(218 + 67y + 38y2 + 5y3 + 3y4 + y5 + y6)q12 + . . .

Z110 = q4

+(10 + 2y + y2)q8

+(154 + 44y + 13y2 + 2y3 + y4)q12

+(1900 + 726y + 211y2 + 47y3 + 13y4 + 2y5 + y6)q16 + . . .

Z220 = (6 + y)q8

+(136 + 39y + 7y2 + y3)q12

+(1844 + 703y + 182y2 + 40y3 + 7y4 + y5)q16

+(18384 + 8563y + 2729y2 + 750y3 + 183y4 + 40y5 + 7y6 + y7)q20 + . . . ,(4.81)

for f with half vector structure

Z011 = Z101 = 1

+(1 + y)q4

+(10 + 2y + y2)q8

+(39 + 12y + 2y2 + y3)q12 + . . .

Z111 = q4

+(5 + y)q8

+(31 + 6y + y2)q12

+(165 + 37y + 6y2 + y3)q16 + . . .

Z221 = 3q8

+(26 + 3y)q12

+(155 + 29y + 3y2)q16

+(746 + 184y + 29y2 + 3y3)q20 + . . .

Z211 = Z121 = 0, (4.82)
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and for f with no vector structure

Z022 = Z202 = 1

+(6 + y)q8

+(46 + 7y + y2)q16

+(297 + 53y + 7y2 + y3)q24 + . . .

Z112 = q4

+(13 + y)q12

+(109 + 14y + y2)q20

+(678 + 123y + 14y2 + y3)q28 + . . .

Z122 = Z212 = 3q8

+(37 + 3y)q16

+(275 + 40y + 3y2)q24

+(1546 + 315y + 40y2 + 3y3)q32 + . . .

Z222 = 10q12

+(102 + 10y)q20

+(662 + 112y + 10y2)q28

+(3392 + 774y + 112y2 + 10y3)q36 + . . .

Z122′ = Z212′ = 0

Z221′ = 0

Z222′ = 0. (4.83)

As a last minor check, we note that for the Φ = D4 model only, there is an S3

triality group of automorphisms which permute the non-trivial center elements s, c, v ∈

C ≃ Z2 × Z2: Restricting attention to the q8 terms, we have

Z110 = Z011 = Z101 = (10 + 2y + y2)q8 mod q2n, n 6= 4

Z220 = Z022 = Z202 = (6 + y)q8

Z221 = Z122 = Z212 = 3q8. (4.84)
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